\square
VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (CBCS) III-Semester Supplementary (New/Old) Examinations, June-2019

Bridge Course: Fundamentals of Linear Algebra and Vector Calculus

(Civil, ECE \& Mech. Engg.)
Time: $\mathbf{3}$ hours
Max. Marks: 50
Note: Answer ALL questions in Part-A and any FIVE from Part-B
Part-A (5 $\times 2=10 \mathrm{Marks}$

1. If $z=\frac{\cos y}{x}$ and $x=u^{2}-v, y=e^{v}$, find $\frac{\partial z}{\partial v}$
2. Evaluate $\int \sin ^{-1} x d x$.
3. If $\bar{r}=x \bar{\imath}+y \bar{J}+z \bar{k}$, show that $\operatorname{grad} r=\frac{\bar{r}}{r}$
4. Evaluate $\int_{1}^{2} \int_{1}^{3} x y^{2} d x d y$
5. State Gauss's divergence theorem in a plane.

Part-B (5 $\times 8=40$ Marks $)$
 (All sub-questions carry equal marks)

6. a) Define Total derivative of a function, find $\frac{d u}{d t}$ If $u=\sin \frac{x}{y}, x=e^{t}, y=t^{2}$
b) If $u=f(y-z, z-x, x-y)$ Prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$
7. a) Evaluate $\int \frac{x e^{x}}{(x+1)^{2}} d x$
b) Evaluate $\int \frac{\sin x \cos x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x} d x$
8. a) Define Irrotational Vector. Show that the vector field $\bar{F}=(\sin y+z) \bar{\imath}+(x \cos y-z) \bar{J}+(x-y) \bar{k}$ is irrotational.
b) Calculate the angle between the normals to the surface $x y=z^{2}$ at the points $(4,1,2)$ and $(3,3,-3)$.
9. a) If $\bar{F}=\left(x^{2}+y^{2}\right) \bar{\imath}-2 x y \bar{\jmath}$ evaluate $\oint_{c} \bar{F} . \overline{d r}$ where c is the rectangle in $x y$ plane bounded by $y=0, y=1, x=0, x=2$.
b) Evaluate $\int_{s} \bar{F} \cdot \bar{n} d s$ where $\bar{F}=z \bar{l}+x \bar{J}-3 y^{2} z \bar{k}$ and S is the Surface of the cylinder $x^{2}+y^{2}=16$ included in the first octant between $\mathrm{z}=0$ and $\mathrm{z}=5$.
10. a) Evaluate \int_{v} div $\bar{F} d v$ where $\bar{F}=4 x i-2 y^{2} j+z^{2} k$ bounded by the Region $x^{2}+y^{2}=4, z=0$ and $z=3$.
b) Using Green's theorem, Evaluate $\int_{c}\left(x^{2}-x y^{3}\right) d x+\left(y^{2}-2 x y\right) d y$, Where c is the square with vertices $(0,0),(2,0),(2,2),(0,2)$.
11. a) If $f=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ Prove that $\frac{\partial^{2} u}{\partial x^{2}} \frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0$.
b) Evaluate $\int e^{x} \cos ^{2} x d x$.
12. Answer any two of the following:
a) Find the Directional derivative of $\emptyset=x^{2} y z+4 x z^{2}$ at $(1,-2,-1)$ in the direction of $2 \mathrm{i}-\mathrm{j}-2 \mathrm{k}$.
b) If $\bar{F}=3 x y \bar{\imath}-y^{2} \bar{J}$, evaluate $\oint_{c} \bar{F} \cdot \overline{d r}$, where c is the arc of the parabola $y=2 x^{2}$ from $(0,0)$ to $(1,2)$.
c) Apply Stokes theorem, to evaluate $\int_{c}(y d x+z d y+x d z)$ where c is the curve of intersection of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and $x+z=a$.
