Hall	Ticl	ket	Num	ber:
TOOTT	* * **		TAPPET	UVI.

Time: 3 hours

Code No. : 13711 S(A)

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (CBCS) III-Semester Supplementary (New/Old) Examinations, June-2019

Bridge Course: Fundamentals of Linear Algebra and Vector Calculus (Civil, ECE & Mech. Engg.)

Max. Marks: 50

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A
$$(5 \times 2 = 10 Marks)$$

1. If
$$z = \frac{\cos y}{x}$$
 and $x = u^2 - v$, $y = e^v$, find $\frac{\partial z}{\partial v}$

- 2. Evaluate $\int \sin^{-1} x \, dx$.
- 3. If $\bar{r} = x\bar{\iota} + y\bar{\jmath} + z\bar{k}$, show that grad $r = \frac{\bar{r}}{r}$
- 4. Evaluate $\int_{1}^{2} \int_{1}^{3} xy^{2} dx dy$
- 5. State Gauss's divergence theorem in a plane.

Part-B $(5 \times 8 = 40 Marks)$ (All sub-questions carry equal marks)

- 6. a) Define Total derivative of a function , find $\frac{du}{dt}$ If $u = \sin \frac{x}{y}$, $x = e^t$, $y = t^2$ b) If u = f(y - z, z - x, x - y) Prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$
- 7. a) Evaluate $\int \frac{xe^x}{(x+1)^2} dx$
 - b) Evaluate $\int \frac{\sin x \cos x}{a^2 \cos^2 x + b^2 \sin^2 x} dx$
- 8. a) Define Irrotational Vector. Show that the vector field $\overline{F} = (\sin y + z)\overline{\iota} + (x\cos y - z)\overline{\jmath} + (x - y)\overline{k}$ is irrotational.
 - b) Calculate the angle between the normals to the surface $xy = z^2$ at the points (4,1,2) and (3,3,-3).
- 9. a) If $\overline{F} = (x^2 + y^2)\overline{\iota} 2xy\overline{j}$ evaluate $\oint_c \overline{F} \cdot d\overline{r}$ where c is the rectangle in xy plane bounded by y = 0, y = 1, x = 0, x = 2.
 - b) Evaluate $\int_{S} \overline{F} \cdot \overline{n} \, ds$ where $\overline{F} = z\overline{\iota} + x\overline{j} 3y^2 z\overline{k}$ and S is the Surface of the cylinder $x^2 + y^2 = 16$ included in the first octant between z=0 and z=5.
- 10. a) Evaluate $\int_{v} div \ \overline{F} \ dv$ where $\overline{F} = 4xi 2y^{2}j + z^{2}k$ bounded by the Region $x^{2} + y^{2} = 4, z = 0$ and z = 3.
 - b) Using Green's theorem , Evaluate $\int_c (x^2 xy^3) dx + (y^2 2xy) dy$, Where c is the square with vertices (0,0),(2,0), (2,2), (0,2).
- 11. a) If $f = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$ Prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$. b) Evaluate $\int e^x \cos^2 x dx$.

- 12. Answer any two of the following:
 - a) Find the Directional derivative of $\phi = x^2yz + 4xz^2$ at (1,-2,-1) in the direction of 2i-j-2k.
 - b) If $\overline{F} = 3xy\overline{\iota} y^2\overline{j}$, evaluate $\oint_c \overline{F} \cdot d\overline{r}$, where c is the arc of the parabola $y = 2x^2$ from (0,0) to (1,2).
 - c) Apply Stokes theorem, to evaluate $\int_c (ydx + zdy + xdz)$ where c is the curve of intersection of the sphere $x^2 + y^2 + z^2 = a^2$ and x + z = a.

ශ්ශත්රත්ර